INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 39 (2002) 2189-2201

Spectral element technique for efficient parameter
identification of layered media.
Part III: viscoelastic aspects

R. Al-Khoury, A. Scarpas *, C. Kasbergen, J. Blaauwendraad

Section of Structural Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology,
Stevinweg 1, 2628 CN, Delft, The Netherlands

Received 7 June 2001; received in revised form 11 January 2002

Abstract

This article addresses the issues of wave propagation in elastic—viscoelastic layered systems and viscous parameter
identification from non-destructive dynamic tests. A methodology that combines the spectral element technique, for the
simulation of wave propagation, with the differential operator technique, for stress—strain relationship in viscoelastic
materials, is adopted. The compatibility between the two techniques stems from the fact that both can be treated in the
frequency domain, which enables naturally the adoption of Fourier superposition. The mathematical formulation of
spectral elements for Burger’s viscoelastic material model is highlighted. Also, an inverse procedure for the identifi-
cation of the material’s Young’s moduli and complex moduli for layer systems is described. It is shown that the
proposed methodology enables the substitution of an expensive laboratory testing procedure for the determination of
material complex moduli with non-destructive dynamic testing. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In Part I and II of this series of articles (Al-Khoury et al., 2001a, 2001b, Part I and II), detailed for-
mulations for wave motions and parameter identifications in linear elastic multi-layer systems were pre-
sented. Because many engineering materials exhibit viscoelastic behavior, the method is extended in this
article, Part I11, to the case of multi-layer systems consisting of both linear elastic and viscoelastic material
layers. Emphasis is placed on studying wave motion in a Burger type viscoelastic material, and on iden-
tifying the material complex moduli. A typical example of such a material is asphalt concrete.

Viscosity affects the propagation of waves in viscoelastic media in a rather significant manner. The
solution of the wave propagation in linear viscoelastic solids can be obtained from that of the corre-
sponding elastic one by replacing Hooke’s law with its corresponding viscoelastic stress—strain relationship.
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In general two different formulations are used to describe the stress—strain relations of viscoelastic materials
(Findley et al., 1976):

(a) The differential operator method, in which the stress—strain relationship is expressed as
Po ij = QSU (1)

where P and Q are differential operators.
(b) The hereditary integrals method, in which the stress—strain relationship is expressed as

o(f) = /0 Y(e—1) [a‘ga(f)] dr 2)

where Y (¢) is the relaxation modulus function and ¢ is the time at which the response strain starts.

Even though both formulations are equivalent to each other, their suitability to solve viscoelastic
problems is case dependent. The integral method is able to describe time dependent constitutive models
more generally, however, it usually leads to complicated formulations that are less suitable for numerical
calculations.

Normally solutions to Egs. (1) and (2) are done by the application of the Laplace transform. Although
the forward Laplace transforms of the viscoelastic solutions can be obtained in a simple manner, it results
to rather complicated complex inversion integrals. These integrals are, in many cases, difficult to evaluate
analytically as well as numerically. Achenbach (1975) has shown that it is possible to invert the transforms
in a relatively simple manner only for the rather special case that the relaxation functions in bulk and in
shear show the same time dependence.

In this article, a methodology that combines the spectral element technique (Doyle, 1997), for the
simulation of wave propagation in layered systems, with the differential operator technique, Eq. (1), for
stress—strain relations in viscoelastic Burger’s materials, is adopted. These techniques form a sound com-
bination because the solutions involved, in both methods, can be treated at a particular harmonic (fre-
quency) level. In the spectral element method, the general solution of the wave equations begins with
particular solutions of harmonic waves of the form

o(x,1) = p(x, w)e"” (3)

In the differential operator technique, the stress—strain relation, Eq. (1), for a viscoelastic material subjected
to a harmonic excitation can be expressed as

(i(U)PO'l’jeiwt = (iw)QSl‘jeiwt (4)

By employing Eq. (4) into (3) the equation of motion in a viscoelastic medium can be solved at each fre-
quency. For a transient case, the general solution to the wave propagation problem can then be obtained by
summing over all harmonic waves.

The spectral element technique combines the exact solution of wave motions with the finite element
organization of the system matrices. Because waves are described exactly in the spectral element, one el-
ement is sufficient to describe a whole layer without the need for subdivisions. Consequently, the size of the
mesh of a layered medium is only as large as the number of the layers involved. This reduces the com-
putational requirements dramatically.

Also near-to-intermediate boundary field conditions are considered. Consequently, the solution to the
spatial domain can be carried out by means of a series summation. Such a solution avoids the inconve-
nience of the conventional infinite integration involved in the solution of far field problems. Series sum-
mations contribute to the computational efficiency and robustness. It is the computational efficiency of the
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spectral element, and the robustness of the series summation, which make the proposed technique attractive
for solving inverse problems.

In this article, aspects of the forward calculation of wave propagation in viscoelastic Burger’s material
layers and inverse calculation of the viscoelastic parameters are presented. As an application, numerical
examples are presented for the simulation of wave propagation in a pavement structure as a result of the
dynamic action of the non-destructive falling weight deflectometer (FWD) test (van Gurp, 1995). FWD is
a commonly used test for pavement quality evaluation studies. Also, the utilization of the above results
for the identification of the layer viscoelastic parameters is discussed.

2. Spectral elements for a viscoelastic medium

The formulation of a spectral element begins from the derivation of the equations of motion. The
derivation of the equations of motion in a viscoelastic solid follows the same procedure as that of the linear
elastic and can be expressed (Kolsky, 1963) as

{im + ﬁ(r)}vv u+ @)V = pi (5)

in which u is the displacement vector, p is the mass density, V indicates a vector differential operator; V - u
is the divergence of u and V?u is the vector Laplacian of u, and A(¢) and a(¢) are the viscoelastic material
parameters. These parameters can be determined from the viscoelastic stress—strain relationship, which can
be expressed in terms of the differential operators P and Q as

Poy; = Qg (6)

This relation is also called the analogy relation in correspondence with the elastic relations. The operators
P and Q of Eq. (6) may be expressed as

o 0!
PE;pk@, QEZ%@ (7)

where the p’s and the ¢’s are material constants and k and / are indices, which depend on the material
model. Upon substituting Eq. (7) into Eq. (6) and by use of Fourier transformation, the spectral form of the
stress—strain relationship can be expressed as

{ Zpk(iw)k}aij = { qu(iw)l}%}j ®)

where the ““hat” indicates that the formulation is in the frequency domain.
Also, by applying Fourier transformation to Eq. (5), the spectral form of the wave motion can be
expressed as

{2 () + 1 (0)}VV -8 + g (o) VA + w’p =0 9)

where 2*(w) and p*(w) are the complex Lame’s constants corresponding to the differential operators A(7)
and fi(¢) respectively. 2" (w) and p*(w) can be determined from Eq. (6) for any specific viscoelastic material
model. Later in this article A"(w) and p*(w) will be derived for Burger’s material model.

An elegant way for solving Eq. (9) is by means of Helmholtz decomposition, in which the displacement
field can be expressed as the sum of the gradient of a scalar potential ¢ and the curl of a vector potential

s as
u=Vep+Vxy (10)
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Fig. 1. Axi-symmetric system subjected to a circular load.

For an axially symmetric system, Fig. 1, the vector potential \y has a component y, only. This simplifies the
solution of the problem to solving only for scalar potentials. For convenience of notation, i will be written
instead of ,. Denoting the displacement components in » and z-directions by u, and u, respectively, the
relations between the displacement components and the potentials are:

_Op 0Oy _ %o 13(y)

“"_5_5’ ”Z_az r Or (11)
and the relevant stresses are
o Ou, A 0(ru,) [ %u,  Ou
o= (14 20) e 4 2200, rz,—u(az+ar) (12)

Substituting Eq. (10) into Eq. (9) leads to uncoupled partial differential equations for the longitudinal
wave and the transverse wave as

25 P 25
—0’p = [c;(w)]2<aa:f+iaa‘f+aaz‘f> (13)
~ Xy 10y Y
~l = [c:<w>]2(a—)f+;a—'f+a—f‘%> "
where
* . 1/2 " 1/2
¢i(w) = (M) and ¢(w) = (“ 2‘”)) (15)

define the longitudinal and transverse complex wave velocities respectively. The wave number for the
longitudinal and the transverse waves are then

s=o(rortzmm) ™ 5={it) 1o

respectively. Apparently the wave numbers are complex which implies that the amplitude decreases with
increasing distance and the attenuation rate depends on the frequency.
The solutions of the wave equations (13) and (14) can be expressed (Al-Khoury et al., 2001a, Part I)

as

o(r,z,m) = Aei‘f*ZJo(nr) (17)
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¥(r,z,0) = Be 0 (nr) (18)

in which 4 and B are the wave amplitudes determined from the boundary conditions, Jy and J; are the
Bessel functions of the first kind, w is the angular frequency, 7 is the wave number in the radial direction
and &* and (" are the complex longitudinal and transverse wave numbers in the vertical direction, defined as

E=k - and U=k —n)" (19)

respectively. The spectrum relations, Eq. (16), with their corresponding wave number relations, Eq. (19),
constitute the departure from the elastic case.

Then, following the procedures presented in Part I of this series of articles, a layer spectral element and
a half-space spectral element can be formulated. The stiffness matrices for a viscoelastic material of both
types of elements are listed in the Appendix A.

In the z-direction the layer spectral element is described by two nodes, Fig. 2, and the half-space element
is described by one node. In the radial direction, the element is assumed to simulate near-to-intermediate
fields. Here, a finite medium with a boundary condition

u(r,z=cnt) = 0; r=R (20)

is considered, in which R is some distance, faraway from the source, at which waves are known a priori to
vanish. This condition represents a homogenous boundary condition at » = R. The imposition of such a
condition will lead inevitably to a series summation of the form

u(r,z,1,, ,) Zamn Jo(Mu?) (21)
m=1
where G, (z) is a function of z, and J,(5,,r) is a function r.
In case of a transient force P(r, ¢), Fig. 1, with a spatial distribution S(r) and a time variation F(¢), the in-

time force—displacement relationship can be obtained by

(r,z,1) Z Z G (2) Eppd (1, 7) F e (22)

where G,,Am (2)J,(n,,r) represents the transfer function of the system obtained from the stiffness matrix in-
version, F,, is the Fourier-Bessel coefficients of S(r) and F, denotes the fast Fourier coefficients of F (). The
Fourier coefficient F, can be obtained numerically by means of the forward fast Fourier transforms (FFT)
(Brigham, 1998). The Bessel coefficient f‘m, on the other hand, can be determined analytically. Quantifi-
cation of F, and F,, for a typical FWD load pulse duration and shape are presented in Part 1.

Fig. 2. Axi-symmetric spectral layer element.
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3. Spectral simulation of Burger materials

Usually in describing the viscoelastic behavior of a material, combination of springs and dashpots are
utilized. Some of the well known models are Maxwell, Voigt (Kelvin), Standard Solid and Burger. Usually
the Voigt’s model is utilized to simulate viscous damping in materials. In such cases the elastic modulus is
replaced by the complex modulus

E* = E(1 +iwé&y) (23)

in which the damping ratio &; = n/E with 5 the dashpot constant and E the spring constant. For many
engineering materials such kind of damping is adequate for simulation of the viscous retardation forces.
However, for asphaltic materials, Burger’s model is commonly utilized (Huang, 1993).

Burger’s model (Shames and Cozzarelli, 1992), Fig. 3, simulates the material behavior by a combination
of a Maxwell and a Kelvin model in series. The Maxwell model consists of a Hookean element with a linear
spring constant £, connected in series with a Newtonian element with viscosity coefficient #,. The Kelvin
model consists of a Hookean and a Newtonian element connected in parallel with constants £, and #,

respectively.
The stress—strain relationship for Burger’s model under uniaxial compression/tension is expressed as
Mo, M . M. M .
o =y 612 24
6+(E1+E2+E2)0+E1E20 e E, ¢ (24)

From Eq. (24) it can be shown that the operator pair of Eq. (7) (in tension/compression) for Burger’s model
is

P — P‘M-PEg—i-PEa—2 and QF = Eg—i— : & (25)
0 Yor "ror Ny T e
/
£ <
p=
~ ®
-
|- .
5 <
-

Fig. 3. Burger’s model.
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in which Pf =1, Pf and Py are the coefficients of ¢ and & in Eq. (24) respectively, and ¢§ and ¢5 are the
coefficient of ¢ and & in Eq. (24) respectively.

Applying the Fourier transform to Eq. (24), i.e. substituting 9/t with iw and ©*/0¢*> with —w?, and by
using the analogy relation for E, lead to:

w? [Plqu — qg(l — PzEcoz)] +iw [Pqucuz — q]E(l — Pfcuz)]

3 (26)
PE@w? + (1 — PEap?)

E'(w) =

which is known as the complex modulus of Burger’s model. This modulus can be obtained from uniaxial
frequency sweep tests on a cylindrical specimen. As an alternative, as it will be shown later, this modulus
can be obtained from dynamic non-destructive testing of structures, which can be of importance in road
engineering.

From Eq. (26), the complex shear modulus and the complex Lame’s constant can be determined as

1 (o) = 3K (iogi — o'gy) (27)
9K (1 +iwPf — w*PF) — iwgt + w?q5

and
X(w) =K -3 (o) (28)

respectively, with K being the bulk modulus. Then, by substituting Eq. (27) into the stiffness matrices, Eqs.
(A.1) and (A.2), layer and half-space spectral elements for Burger’s material can be obtained.

Here the material is assumed to exhibit elastic compressibility for bulk behavior (¢; = 3K¢;) and a
Burger-type behavior under multi-dimensional distortion (s;; = 2u*(w)e;;). For such a material the varia-
tions of the real and imaginary parts of the complex shear modulus with frequency are shown in Fig. 4. It
can be seen that this material behaves like a fluid (|u*| = 0) at zero frequency, after which the shear modulus
starts to increase until it reaches to the elastic shear modulus asymptotically.

The variation of Poisson’s ratio with frequency is shown in Fig. 5. It can be seen that at zero frequency
Burger’s model behaves like a pure incompressible fluid and with increasing frequency the compressibility
increases.
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" £, o
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ol
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2 1400 600 2
wl ml
¢ 700 / 300 E
0 0
0 250 500 750 1000

®

Fig. 4. The real and imaginary parts of the complex shear modulus of a viscoelastic material with K = 8100 MPa, E; = 8100 MPa,
E> = 4050 MPa, 5, = 200 MPas and 5, = 150 MPas.
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Fig. 5. The real and imaginary parts of the complex Poisson’s ratio of a viscoelastic material with K = 8100 MPa, E, = 8100 MPa,
E, = 4050 MPa, 7, = 200 MPas and 5, = 150 MPas.

4. Numerical examples

In this section some numerical analyses are presented to describe the effects of viscosity on wave
propagation in layered systems.

As an example, a pavement structure consisting of a top layer of asphalt concrete 100 mm thick,
a granular subbase layer 300 mm thick and a subgrade layer of infinite thickness was simulated. The
viscoelastic parameters are shown in Table 1 (Hopman, 1996). The pavement was subjected to a
bell shape pulse of 50 ms duration (frequency spectrum ranging between 0 and 100 Hz.) and 0.707
MPa stress amplitude over a loaded area of 150 mm radius. The spectral element mesh consisted of
three elements only with each element representing a specific material layer; asphalt, subbase and sub-
grade.

Three different analyses were conducted: in the first it was assumed that all layer materials were elastic, in
the second, only the asphalt material was assumed viscoelastic and in the third, all layer materials were
assumed viscoelastic. For the elastic layer materials analysis, £; of Table 1 was utilized.

The computed vertical displacements at the center of the load application for all three analyses are
shown in Fig. 6. The results can easily be interpreted by use of Fig. 4. It can be seen that due to Burger low
stiffness at low frequencies, larger displacements are generated with increasing number of the viscoelastic
layers. Also, due to viscoelasticity, delayed unloading can clearly be noticed.

To examine the effect of Poisson’s ratio, two different analyses were conducted. The first was with
constant Poisson’s ratio and the second with Poisson’s ratio varying with frequency. Fig. 7 shows the
vertical displacements directly under the load. The computational results can be interpreted by use of Fig.
5, which shows that at low frequencies, the material behaves more like an incompressible fluid. This results
to the increase of its bulk modulus, and hence to a smaller deformation. With increasing frequency the
material starts to behave like that of the constant Poisson case.

These examples indicate that at some situations and in particular at higher temperatures, the viscous
response of asphalt pavements to dynamic loads should be taken into consideration.

Table 1

Elastic and viscoelastic layer material parameters
Material E; (MPa) E, (MPa) 7, (MPas) 1, (MPas) K (MPa) p (Kg/m?)
Asphalt 8100 4050 200 150 8100 2300
Subbase 10800 13 500 500 1000 10800 2000

Subgrade 100 50000 1000 1000 100 1500
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Fig. 6. Wave propagation in a three-layer pavement structure with varying viscosity contribution.
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Fig. 7. Effect of layer material Poisson’s ratio on pavement response.
5. Elastic—viscoelastic parameter identification

One of the main advantages of the spectral element technique is its suitability for solving inverse
problems. In Part II of this series of publications, a procedure for the identification of elastic parameters in
layered media has been developed. Here, the procedure is extended to account for the identification of the

viscoelastic parameters.
For a linear viscoelastic system, the experimental transfer function G(w,) at a sensor location s, for a

given frequency w,, can be obtained as

~ uy(w,)
GS Wn) § experimental — = 29
(G cminens = 5 9)
in which %(®,) is the measured displacement at sensor s and P(w,) is the measured force.
Theoretically, on the other hand, G(w,) can be obtained from the spectral element formulation. From
Eq. (22) it is obvious that the transfer function at location s can be expressed as

{G ((}J,, }theoretlcdl Z Gmn JO ﬂml"s) (30)

By relating the theoretical transfer functions with those obtained from the measurements, the system ob-
jective function can be constructed as

Z amn (Z)JO (”mrs)

~0 (31)
theoretical
in which x represents the vector of the unknown variables such as layer elastic moduli and the viscous
parameters, e.g. £y, E», n, and 5, of the Burger’s model.

q(X) = ‘ GS (wﬂ) |experimental -
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Eq. (31) is a system of multi-dimensional non-linear equations. Solution of such a system can be done by
means of minimization techniques. The Modified Powell hybrid algorithm (Press et al., 1986) for solving a
non-constrained system of non-linear simultaneous equations with a finite-difference Jacobian has been
utilized in this investigation. (In Part II, three different minimization techniques have been utilized for
solving the system objective function.)

In road engineering, Burger’s model is utilized for the simulation of the viscoelastic behavior of asphalt
materials (Hopman, 1996). Such analysis requires data about Burger parameters E;, E,, n, and #,, which
are necessary for the calculation of the material complex modulus, Eq. (26). These parameters are usually
obtained from laboratory frequency sweep tests. Such kind of testing, in addition to being expensive, re-
quires specimens cored out of the road pavement. The specimen coring procedure aggravates traffic con-
gestion conditions and renders viscoelastic analyses less attractive for road authorities.

As an alternative, as it is proposed here, the complex modulus is determined from the measured data of
non-destructive tests and in particular from the FWD test. The proposed procedure allows the determi-
nation of the complex modulus without a priori knowledge of Burger’s parameters. In Eq. (31) the complex
modulus is described as

E* ((}J) = ERe —+ iE]m (32)

in which ER. is the real part of the complex modulus, often called the storage modulus and, Ey, is the
imaginary part of the complex modulus, often called the loss modulus. Solving Eq. (31) will result in the
estimation of both Eg. and Ep,, which can be used in forward viscoelastic analysis.

At this stage of investigation and for the sake of verifying the mathematical derivations and computer
implementation of the developed viscous parameter identification procedure, only computed (not con-
taminated) data was utilized. For this reason, results of FWD forward analyses for the pavement structure
with the properties presented in Table 1 were utilized. The vertical displacements at typical sensor locations
(radial distances from » = 0 to 1800 mm) are shown in Fig. 8.

The displacement data together with the applied load data were used as input for back calculating the
material elastic moduli of the subbase and subgrade layers and the complex moduli (at different frequen-
cies) of the asphalt layer.

Table 2 shows the actual parameters as were input in the forward analysis and the back calculated
parameters. The actual complex moduli at different frequencies were calculated by means of Eq. (26) and
the back calculated are computed by the inverse model without a priori knowledge about the Burger in-
ternal parameters. It can be seen that the back calculated moduli are almost identical to the actual ones.
The initial guesses (seed values) of the unknown parameters were around 20% of the actual values. The
number of iterations needed for the backcalculation of the elastic and complex moduli were ranging
between 20 and 40. In an Intel 300 MHz PC, each iteration takes around 1 s.
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Fig. 8. Vertical displacements at typical sensor locations.
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Table 2
Forward and inverse calculation of elastic and viscoelastic material moduli
Frequency Layer Forward calculation Inverse calculation
(Hz) E_mod. (MPa) E*(w) from Eq. (26) E_mod. (MPa) E*(w)
ERe. Ein Ege Em
20 Asphalt 6840.75 2680.60 6840.68 2680.66
Subbase 10800 10799
Subgrade 100 99
25 Asphalt 7251.78 2277.73 7251.79 2277.71
Subbase 10800 10799
Subgrade 100 99
30 Asphalt 7495.12 1961.27 7495.17 1961.34
Subbase 10800 10799
Subgrade 100 99

The significance of this inverse procedure is that the inverse model does not rely on a specific viscoelastic

model, such as Burger, Kelvin, Standard Solid, etc. Instead it computes the complex moduli directly. As
mentioned earlier, this is important for engineering purposes because it substitutes determination of the
viscous parameters via expensive laboratory tests with a relatively inexpensive non-destructive test.

6.

Conclusions

The combination between the spectral element technique for wave propagation analysis in layered

systems and the differential operator technique for stress—strain relationships in viscoelastic materials has
the following advantages:

L.

2.

Both techniques can be treated in the frequency domain, and hence their incorporation allows naturally
the utilization of the Fourier superposition method for solving transient problems.

The double Fourier summation (Fourier—Bessel series for the spatial domain and FFT for the time-fre-
quency domain) over frequency and wave number alleviates the inconvenience of the numerical imple-
mentation of the infinite integrals that usually result from adopting other techniques.

. The spectral element feature of exact solution of wave propagation in a layer element in combination

with the finite element organization of multi-layers results to computationally efficient formulations suit-
able for computer codes. This makes the proposed method appropriate for utilization in iterative
schemes for solving inverse problems.

. The proposed methodology leads to an elegant approach for the determination of material’s Young’s

moduli and viscous complex moduli from the results of non-destructive dynamic tests. In road engineer-
ing, this can be of practical importance because it avoids the inconvenience of coring specimens from
road pavements and expensive laboratory test procedures.
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Appendix A

Stiffness matrix for an axi-symmetric viscoelastic layer spectral element is:

kl Imn k12mn kl 3mn kl4mn

B |t e (a1
sym k22mn
where
Kt = “j”) (i€, (G +12) (7,0120n + €,,5,,0102) |
kvomn = Hj::n) {nmé’;,,,é,*m, ( - Cf,,z,, + 371,2,,) (lesz - 4efié:””hefi€:’"h) = 11,0110 (’73,,(:; - ’7; - Zfﬁ;ifnzn)}
b =02 20, (64 2 (e 00 + 8 00) )
b =\ Lo 0 (50 2) (€70 — e 01) )
koomn = u;(;in) {igfnn C,i,, + ”Ii) ('I,anllez + ffnann,,QuQu)}
o =12 200, (654 2) (000 + € 0n) )

A, 1s the characteristic equation of the layer element defined as
 ox e it W2 o2
A = 25,6 (4e St g=ibmh Q12Q22) - (fmnCm,, + ’73,) 0110a1, where
On=1—ewl Oy =T1—em"  Qp=1+e%n" 0y=1+em

Stiffness matrix for an axi-symmetric half-space spectral element is:

T kllmn klZmn
k"m B |:Sym k22mn :| (AZ)

where
kllmn = %lé;n (C:;Zn + nfn)

@y ko ok 2
k12mn = 'uj ) N (25,,,,7C,,,n - é,mn =+ ’731)

(@) e (02
k22mn = 'uj ) lgmn (Cmn + ’131)

il’l Wthh Amn = ’73,, + 5:1nCnn
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