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Abstract

This article addresses the issues of wave propagation in elastic–viscoelastic layered systems and viscous parameter

identification from non-destructive dynamic tests. A methodology that combines the spectral element technique, for the

simulation of wave propagation, with the differential operator technique, for stress–strain relationship in viscoelastic

materials, is adopted. The compatibility between the two techniques stems from the fact that both can be treated in the

frequency domain, which enables naturally the adoption of Fourier superposition. The mathematical formulation of

spectral elements for Burger’s viscoelastic material model is highlighted. Also, an inverse procedure for the identifi-

cation of the material’s Young’s moduli and complex moduli for layer systems is described. It is shown that the

proposed methodology enables the substitution of an expensive laboratory testing procedure for the determination of

material complex moduli with non-destructive dynamic testing. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In Part I and II of this series of articles (Al-Khoury et al., 2001a, 2001b, Part I and II), detailed for-
mulations for wave motions and parameter identifications in linear elastic multi-layer systems were pre-
sented. Because many engineering materials exhibit viscoelastic behavior, the method is extended in this
article, Part III, to the case of multi-layer systems consisting of both linear elastic and viscoelastic material
layers. Emphasis is placed on studying wave motion in a Burger type viscoelastic material, and on iden-
tifying the material complex moduli. A typical example of such a material is asphalt concrete.

Viscosity affects the propagation of waves in viscoelastic media in a rather significant manner. The
solution of the wave propagation in linear viscoelastic solids can be obtained from that of the corre-
sponding elastic one by replacing Hooke’s law with its corresponding viscoelastic stress–strain relationship.
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In general two different formulations are used to describe the stress–strain relations of viscoelastic materials
(Findley et al., 1976):

(a) The differential operator method, in which the stress–strain relationship is expressed as

Prij ¼ Qeij ð1Þ

where P and Q are differential operators.
(b) The hereditary integrals method, in which the stress–strain relationship is expressed as

r tð Þ ¼
Z t

0

Y t
�
� t0
� oe t0

� �
ot0

" #
dt0 ð2Þ

where Y tð Þ is the relaxation modulus function and t0 is the time at which the response strain starts.
Even though both formulations are equivalent to each other, their suitability to solve viscoelastic

problems is case dependent. The integral method is able to describe time dependent constitutive models
more generally, however, it usually leads to complicated formulations that are less suitable for numerical
calculations.

Normally solutions to Eqs. (1) and (2) are done by the application of the Laplace transform. Although
the forward Laplace transforms of the viscoelastic solutions can be obtained in a simple manner, it results
to rather complicated complex inversion integrals. These integrals are, in many cases, difficult to evaluate
analytically as well as numerically. Achenbach (1975) has shown that it is possible to invert the transforms
in a relatively simple manner only for the rather special case that the relaxation functions in bulk and in
shear show the same time dependence.

In this article, a methodology that combines the spectral element technique (Doyle, 1997), for the
simulation of wave propagation in layered systems, with the differential operator technique, Eq. (1), for
stress–strain relations in viscoelastic Burger’s materials, is adopted. These techniques form a sound com-
bination because the solutions involved, in both methods, can be treated at a particular harmonic (fre-
quency) level. In the spectral element method, the general solution of the wave equations begins with
particular solutions of harmonic waves of the form

u x; tð Þ ¼ buu x;xð Þeixt ð3Þ

In the differential operator technique, the stress–strain relation, Eq. (1), for a viscoelastic material subjected
to a harmonic excitation can be expressed as

ixð ÞPrije
ixt ¼ ixð ÞQeije

ixt ð4Þ

By employing Eq. (4) into (3) the equation of motion in a viscoelastic medium can be solved at each fre-
quency. For a transient case, the general solution to the wave propagation problem can then be obtained by
summing over all harmonic waves.

The spectral element technique combines the exact solution of wave motions with the finite element
organization of the system matrices. Because waves are described exactly in the spectral element, one el-
ement is sufficient to describe a whole layer without the need for subdivisions. Consequently, the size of the
mesh of a layered medium is only as large as the number of the layers involved. This reduces the com-
putational requirements dramatically.

Also near-to-intermediate boundary field conditions are considered. Consequently, the solution to the
spatial domain can be carried out by means of a series summation. Such a solution avoids the inconve-
nience of the conventional infinite integration involved in the solution of far field problems. Series sum-
mations contribute to the computational efficiency and robustness. It is the computational efficiency of the
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spectral element, and the robustness of the series summation, which make the proposed technique attractive
for solving inverse problems.

In this article, aspects of the forward calculation of wave propagation in viscoelastic Burger’s material
layers and inverse calculation of the viscoelastic parameters are presented. As an application, numerical
examples are presented for the simulation of wave propagation in a pavement structure as a result of the
dynamic action of the non-destructive falling weight deflectometer (FWD) test (van Gurp, 1995). FWD is
a commonly used test for pavement quality evaluation studies. Also, the utilization of the above results
for the identification of the layer viscoelastic parameters is discussed.

2. Spectral elements for a viscoelastic medium

The formulation of a spectral element begins from the derivation of the equations of motion. The
derivation of the equations of motion in a viscoelastic solid follows the same procedure as that of the linear
elastic and can be expressed (Kolsky, 1963) as

~kk tð Þ
n

þ ~ll tð Þ
o
rr � uþ ~ll tð Þr2u ¼ q€uu ð5Þ

in which u is the displacement vector, q is the mass density, r indicates a vector differential operator; r � u
is the divergence of u and r2u is the vector Laplacian of u, and ~kk tð Þ and ~ll tð Þ are the viscoelastic material
parameters. These parameters can be determined from the viscoelastic stress–strain relationship, which can
be expressed in terms of the differential operators P and Q as

Prij ¼ Qeij ð6Þ
This relation is also called the analogy relation in correspondence with the elastic relations. The operators
P and Q of Eq. (6) may be expressed as

P 	
X
k

pk
ok

otk
; Q 	

X
l

ql
ol

otl
ð7Þ

where the p’s and the q’s are material constants and k and l are indices, which depend on the material
model. Upon substituting Eq. (7) into Eq. (6) and by use of Fourier transformation, the spectral form of the
stress–strain relationship can be expressed asX

k

pk ixð Þk
( )brrij ¼

X
l

ql ixð Þl
( )beeij ð8Þ

where the ‘‘hat’’ indicates that the formulation is in the frequency domain.
Also, by applying Fourier transformation to Eq. (5), the spectral form of the wave motion can be

expressed as

k
 xð Þf þ l
 xð Þgrr � buu þ l
 xð Þr2buu þ x2q ¼ 0 ð9Þ
where k
 xð Þ and l
 xð Þ are the complex Lame’s constants corresponding to the differential operators ~kk tð Þ
and ~ll tð Þ respectively. k
 xð Þ and l
 xð Þ can be determined from Eq. (6) for any specific viscoelastic material
model. Later in this article k
 xð Þ and l
 xð Þ will be derived for Burger’s material model.

An elegant way for solving Eq. (9) is by means of Helmholtz decomposition, in which the displacement
field can be expressed as the sum of the gradient of a scalar potential u and the curl of a vector potential
w as

u ¼ ru þr
 w ð10Þ
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For an axially symmetric system, Fig. 1, the vector potential w has a component wh only. This simplifies the
solution of the problem to solving only for scalar potentials. For convenience of notation, w will be written
instead of wh. Denoting the displacement components in r and z-directions by ur and uz respectively, the
relations between the displacement components and the potentials are:

ur ¼
ou
or

� ow
oz

; uz ¼
ou
oz

þ 1

r
oðrwÞ
or

ð11Þ

and the relevant stresses are

rzz ¼ kð þ 2lÞ ouz
oz

þ k
r
o rurð Þ
or

; szr ¼ l
our
oz

�
þ ouz

or



ð12Þ

Substituting Eq. (10) into Eq. (9) leads to uncoupled partial differential equations for the longitudinal
wave and the transverse wave as

�x2buu ¼ ½c
p xð Þ�2 o2buu
or2

�
þ 1

r
obuu
or

þ o2buu
oz2



ð13Þ

�x2bww ¼ c
s xð Þ
� �2 o2bww

or2

 
þ 1

r
obww
or

þ o2bww
oz2

�
bww
r2

!
ð14Þ

where

c
p xð Þ ¼ k
 xð Þ þ 2l
 xð Þ
q

� 
1=2

and c
s xð Þ ¼ l
 xð Þ
q

� 
1=2

ð15Þ

define the longitudinal and transverse complex wave velocities respectively. The wave number for the
longitudinal and the transverse waves are then

k
p ¼ x
q

k
ðxÞ þ 2l
ðxÞ

� 
1=2

and k
s ¼ x
q

l
ðxÞ

� 
1=2

ð16Þ

respectively. Apparently the wave numbers are complex which implies that the amplitude decreases with
increasing distance and the attenuation rate depends on the frequency.

The solutions of the wave equations (13) and (14) can be expressed (Al-Khoury et al., 2001a, Part I)
as buu r; z;xð Þ ¼ Aein


zJ0 grð Þ ð17Þ

Fig. 1. Axi-symmetric system subjected to a circular load.
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bww r; z;xð Þ ¼ Be�if
zJ1 grð Þ ð18Þ

in which A and B are the wave amplitudes determined from the boundary conditions, J0 and J1 are the
Bessel functions of the first kind, x is the angular frequency, g is the wave number in the radial direction
and n
 and f
 are the complex longitudinal and transverse wave numbers in the vertical direction, defined as

n
 ¼ ðk
2p � g2Þ1=2 and f
 ¼ ðk
2s � g2Þ1=2 ð19Þ

respectively. The spectrum relations, Eq. (16), with their corresponding wave number relations, Eq. (19),
constitute the departure from the elastic case.

Then, following the procedures presented in Part I of this series of articles, a layer spectral element and
a half-space spectral element can be formulated. The stiffness matrices for a viscoelastic material of both
types of elements are listed in the Appendix A.

In the z-direction the layer spectral element is described by two nodes, Fig. 2, and the half-space element
is described by one node. In the radial direction, the element is assumed to simulate near-to-intermediate
fields. Here, a finite medium with a boundary conditionbuu r; zð ¼ cntÞ ¼ 0; r ¼ R ð20Þ

is considered, in which R is some distance, faraway from the source, at which waves are known a priori to
vanish. This condition represents a homogenous boundary condition at r ¼ R. The imposition of such a
condition will lead inevitably to a series summation of the form

u r; z; gm;xnð Þ ¼
X1
m¼1

bGGmn zð ÞJv gmrð Þ ð21Þ

where bGGmn zð Þ is a function of z, and Jv gmrð Þ is a function r.
In case of a transient force P r; tð Þ, Fig. 1, with a spatial distribution S rð Þ and a time variation F tð Þ, the in-

time force–displacement relationship can be obtained by

u r; z; tð Þ ¼
X
n

X
m

bGGmn zð ÞbFFmJv gmrð ÞbFFne
ixnt ð22Þ

where bGGmn zð ÞJv gmrð Þ represents the transfer function of the system obtained from the stiffness matrix in-
version, bFFm is the Fourier–Bessel coefficients of S rð Þ and bFFn denotes the fast Fourier coefficients of F tð Þ. The
Fourier coefficient bFFn can be obtained numerically by means of the forward fast Fourier transforms (FFT)
(Brigham, 1998). The Bessel coefficient bFFm, on the other hand, can be determined analytically. Quantifi-
cation of bFFn and bFFm for a typical FWD load pulse duration and shape are presented in Part I.

Fig. 2. Axi-symmetric spectral layer element.
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3. Spectral simulation of Burger materials

Usually in describing the viscoelastic behavior of a material, combination of springs and dashpots are
utilized. Some of the well known models are Maxwell, Voigt (Kelvin), Standard Solid and Burger. Usually
the Voigt’s model is utilized to simulate viscous damping in materials. In such cases the elastic modulus is
replaced by the complex modulus

E
 ¼ E 1ð þ ixndÞ ð23Þ
in which the damping ratio nd ¼ g E= with g the dashpot constant and E the spring constant. For many
engineering materials such kind of damping is adequate for simulation of the viscous retardation forces.
However, for asphaltic materials, Burger’s model is commonly utilized (Huang, 1993).

Burger’s model (Shames and Cozzarelli, 1992), Fig. 3, simulates the material behavior by a combination
of a Maxwell and a Kelvin model in series. The Maxwell model consists of a Hookean element with a linear
spring constant E1 connected in series with a Newtonian element with viscosity coefficient g1. The Kelvin
model consists of a Hookean and a Newtonian element connected in parallel with constants E2 and g2

respectively.
The stress–strain relationship for Burger’s model under uniaxial compression/tension is expressed as

r þ g1

E1

�
þ g1

E2

þ g2

E2



_rr þ g1g2

E1E2

€rr ¼ g1 _ee
g1g2

E2

€ee ð24Þ

From Eq. (24) it can be shown that the operator pair of Eq. (7) (in tension/compression) for Burger’s model
is

PE ¼ PE
0

�
þ PE

1

o

ot
þ PE

2

o2

ot2



and QE ¼ qE1

o

ot
þ qE2

o2

ot2
ð25Þ

Fig. 3. Burger’s model.
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in which PE
0 ¼ 1, PE

1 and PE
2 are the coefficients of _rr and €rr in Eq. (24) respectively, and qE1 and qE2 are the

coefficient of _ee and €ee in Eq. (24) respectively.
Applying the Fourier transform to Eq. (24), i.e. substituting o=ot with ix and o2=ot2 with �x2, and by

using the analogy relation for E, lead to:

E
 xð Þ ¼
x2 PE

1 q
E
1 � qE2 1� PE

2 x2
� �� �

þ ix PE
1 q

E
2x

2 � qE1 1� PE
2 x2

� �� �
PE
1 x2 þ 1� PE

2 x2ð Þ2
ð26Þ

which is known as the complex modulus of Burger’s model. This modulus can be obtained from uniaxial
frequency sweep tests on a cylindrical specimen. As an alternative, as it will be shown later, this modulus
can be obtained from dynamic non-destructive testing of structures, which can be of importance in road
engineering.

From Eq. (26), the complex shear modulus and the complex Lame’s constant can be determined as

l
 xð Þ ¼
3K ixqE1 � x2qE2
� �

9K 1þ ixPE
1 � x2PE

2ð Þ � ixqE1 þ x2qE2
ð27Þ

and

k
 xð Þ ¼ K � 2
3
l
 xð Þ ð28Þ

respectively, with K being the bulk modulus. Then, by substituting Eq. (27) into the stiffness matrices, Eqs.
(A.1) and (A.2), layer and half-space spectral elements for Burger’s material can be obtained.

Here the material is assumed to exhibit elastic compressibility for bulk behavior (rii ¼ 3Keii) and a
Burger-type behavior under multi-dimensional distortion (sij ¼ 2l
 xð Þeij). For such a material the varia-
tions of the real and imaginary parts of the complex shear modulus with frequency are shown in Fig. 4. It
can be seen that this material behaves like a fluid ( l
j j ¼ 0) at zero frequency, after which the shear modulus
starts to increase until it reaches to the elastic shear modulus asymptotically.

The variation of Poisson’s ratio with frequency is shown in Fig. 5. It can be seen that at zero frequency
Burger’s model behaves like a pure incompressible fluid and with increasing frequency the compressibility
increases.

Fig. 4. The real and imaginary parts of the complex shear modulus of a viscoelastic material with K ¼ 8100 MPa, E1 ¼ 8100 MPa,

E2 ¼ 4050 MPa, g1 ¼ 200 MPa s and g2 ¼ 150 MPa s.
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4. Numerical examples

In this section some numerical analyses are presented to describe the effects of viscosity on wave
propagation in layered systems.

As an example, a pavement structure consisting of a top layer of asphalt concrete 100 mm thick,
a granular subbase layer 300 mm thick and a subgrade layer of infinite thickness was simulated. The
viscoelastic parameters are shown in Table 1 (Hopman, 1996). The pavement was subjected to a
bell shape pulse of 50 ms duration (frequency spectrum ranging between 0 and 100 Hz.) and 0.707
MPa stress amplitude over a loaded area of 150 mm radius. The spectral element mesh consisted of
three elements only with each element representing a specific material layer; asphalt, subbase and sub-
grade.

Three different analyses were conducted: in the first it was assumed that all layer materials were elastic, in
the second, only the asphalt material was assumed viscoelastic and in the third, all layer materials were
assumed viscoelastic. For the elastic layer materials analysis, E1 of Table 1 was utilized.

The computed vertical displacements at the center of the load application for all three analyses are
shown in Fig. 6. The results can easily be interpreted by use of Fig. 4. It can be seen that due to Burger low
stiffness at low frequencies, larger displacements are generated with increasing number of the viscoelastic
layers. Also, due to viscoelasticity, delayed unloading can clearly be noticed.

To examine the effect of Poisson’s ratio, two different analyses were conducted. The first was with
constant Poisson’s ratio and the second with Poisson’s ratio varying with frequency. Fig. 7 shows the
vertical displacements directly under the load. The computational results can be interpreted by use of Fig.
5, which shows that at low frequencies, the material behaves more like an incompressible fluid. This results
to the increase of its bulk modulus, and hence to a smaller deformation. With increasing frequency the
material starts to behave like that of the constant Poisson case.

These examples indicate that at some situations and in particular at higher temperatures, the viscous
response of asphalt pavements to dynamic loads should be taken into consideration.

Table 1

Elastic and viscoelastic layer material parameters

Material E1 (MPa) E2 (MPa) g1 (MPa s) g2 (MPa s) K (MPa) q (Kg/m3)

Asphalt 8100 4050 200 150 8100 2300

Subbase 10 800 13 500 500 1000 10 800 2000

Subgrade 100 50 000 1000 1000 100 1500

Fig. 5. The real and imaginary parts of the complex Poisson’s ratio of a viscoelastic material with K ¼ 8100 MPa, E1 ¼ 8100 MPa,

E2 ¼ 4050 MPa, g1 ¼ 200 MPa s and g2 ¼ 150 MPa s.
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5. Elastic–viscoelastic parameter identification

One of the main advantages of the spectral element technique is its suitability for solving inverse
problems. In Part II of this series of publications, a procedure for the identification of elastic parameters in
layered media has been developed. Here, the procedure is extended to account for the identification of the
viscoelastic parameters.

For a linear viscoelastic system, the experimental transfer function bGG xnð Þ at a sensor location s, for a
given frequency xn, can be obtained as

fbGGs xnð Þgexperimental ¼
buus xnð ÞbPP xnð Þ

ð29Þ

in which buus xnð Þ is the measured displacement at sensor s and bPP xnð Þ is the measured force.
Theoretically, on the other hand, bGG xnð Þ can be obtained from the spectral element formulation. From

Eq. (22) it is obvious that the transfer function at location s can be expressed as

fbGGs xnð Þgtheoretical ¼
X
m

bGGmn zð ÞJ0 gmrsð Þ ð30Þ

By relating the theoretical transfer functions with those obtained from the measurements, the system ob-
jective function can be constructed as

q xð Þ ¼ jbGGs xnð Þjexperimental �
X
m

bGGmn zð ÞJ0 gmrsð Þ
�����

�����
theoretical

� 0 ð31Þ

in which x represents the vector of the unknown variables such as layer elastic moduli and the viscous
parameters, e.g. E1, E2, g1 and g2 of the Burger’s model.

Fig. 6. Wave propagation in a three-layer pavement structure with varying viscosity contribution.

Fig. 7. Effect of layer material Poisson’s ratio on pavement response.
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Eq. (31) is a system of multi-dimensional non-linear equations. Solution of such a system can be done by
means of minimization techniques. The Modified Powell hybrid algorithm (Press et al., 1986) for solving a
non-constrained system of non-linear simultaneous equations with a finite-difference Jacobian has been
utilized in this investigation. (In Part II, three different minimization techniques have been utilized for
solving the system objective function.)

In road engineering, Burger’s model is utilized for the simulation of the viscoelastic behavior of asphalt
materials (Hopman, 1996). Such analysis requires data about Burger parameters E1, E2, g1 and g2, which
are necessary for the calculation of the material complex modulus, Eq. (26). These parameters are usually
obtained from laboratory frequency sweep tests. Such kind of testing, in addition to being expensive, re-
quires specimens cored out of the road pavement. The specimen coring procedure aggravates traffic con-
gestion conditions and renders viscoelastic analyses less attractive for road authorities.

As an alternative, as it is proposed here, the complex modulus is determined from the measured data of
non-destructive tests and in particular from the FWD test. The proposed procedure allows the determi-
nation of the complex modulus without a priori knowledge of Burger’s parameters. In Eq. (31) the complex
modulus is described as

E
 xð Þ ¼ ERe þ iEIm ð32Þ

in which ERe is the real part of the complex modulus, often called the storage modulus and, EIm is the
imaginary part of the complex modulus, often called the loss modulus. Solving Eq. (31) will result in the
estimation of both ERe and EIm, which can be used in forward viscoelastic analysis.

At this stage of investigation and for the sake of verifying the mathematical derivations and computer
implementation of the developed viscous parameter identification procedure, only computed (not con-
taminated) data was utilized. For this reason, results of FWD forward analyses for the pavement structure
with the properties presented in Table 1 were utilized. The vertical displacements at typical sensor locations
(radial distances from r ¼ 0 to 1800 mm) are shown in Fig. 8.

The displacement data together with the applied load data were used as input for back calculating the
material elastic moduli of the subbase and subgrade layers and the complex moduli (at different frequen-
cies) of the asphalt layer.

Table 2 shows the actual parameters as were input in the forward analysis and the back calculated
parameters. The actual complex moduli at different frequencies were calculated by means of Eq. (26) and
the back calculated are computed by the inverse model without a priori knowledge about the Burger in-
ternal parameters. It can be seen that the back calculated moduli are almost identical to the actual ones.
The initial guesses (seed values) of the unknown parameters were around 20% of the actual values. The
number of iterations needed for the backcalculation of the elastic and complex moduli were ranging
between 20 and 40. In an Intel 300 MHz PC, each iteration takes around 1 s.

Fig. 8. Vertical displacements at typical sensor locations.
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The significance of this inverse procedure is that the inverse model does not rely on a specific viscoelastic
model, such as Burger, Kelvin, Standard Solid, etc. Instead it computes the complex moduli directly. As
mentioned earlier, this is important for engineering purposes because it substitutes determination of the
viscous parameters via expensive laboratory tests with a relatively inexpensive non-destructive test.

6. Conclusions

The combination between the spectral element technique for wave propagation analysis in layered
systems and the differential operator technique for stress–strain relationships in viscoelastic materials has
the following advantages:

1. Both techniques can be treated in the frequency domain, and hence their incorporation allows naturally
the utilization of the Fourier superposition method for solving transient problems.

2. The double Fourier summation (Fourier–Bessel series for the spatial domain and FFT for the time-fre-
quency domain) over frequency and wave number alleviates the inconvenience of the numerical imple-
mentation of the infinite integrals that usually result from adopting other techniques.

3. The spectral element feature of exact solution of wave propagation in a layer element in combination
with the finite element organization of multi-layers results to computationally efficient formulations suit-
able for computer codes. This makes the proposed method appropriate for utilization in iterative
schemes for solving inverse problems.

4. The proposed methodology leads to an elegant approach for the determination of material’s Young’s
moduli and viscous complex moduli from the results of non-destructive dynamic tests. In road engineer-
ing, this can be of practical importance because it avoids the inconvenience of coring specimens from
road pavements and expensive laboratory test procedures.
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Table 2

Forward and inverse calculation of elastic and viscoelastic material moduli

Frequency

(Hz)

Layer Forward calculation Inverse calculation

E mod: (MPa) E
 xð Þ from Eq. (26) E mod: (MPa) E
ðxÞ
ERe EIm ERe EIm

20 Asphalt 6840.75 2680.60 6840.68 2680.66

Subbase 10 800 10 799

Subgrade 100 99

25 Asphalt 7251.78 2277.73 7251.79 2277.71

Subbase 10 800 10 799

Subgrade 100 99

30 Asphalt 7495.12 1961.27 7495.17 1961.34

Subbase 10 800 10 799

Subgrade 100 99
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Appendix A

Stiffness matrix for an axi-symmetric viscoelastic layer spectral element is:

bkkmn ¼
k11mn k12mn k13mn k14mn

k22mn �k14mn k24mn
k11mn �k12mn

sym k22mn

2664
3775 ðA:1Þ

where

k11mn ¼
l
 xnð Þ
Dmn

in

mn f


2

mn
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þ g2
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mQ12Q21
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mnf
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�
þ n


mnf


mne

�in
mnhQ21

�o
Dmn is the characteristic equation of the layer element defined as

Dmn ¼ 2g2
mn


mnf


mn 4e�in
mnhe�if
mnh
�

� Q12Q22

�
� n
2

mnf

2
mn

�
þ g4

m

�
Q11Q21; where

Q11 ¼ 1� e�2in
mnh; Q21 ¼ 1� e�2if
mnh; Q12 ¼ 1þ e�2in
mnh; Q22 ¼ 1þ e�2if
mnh

Stiffness matrix for an axi-symmetric half-space spectral element is:

bkkmn ¼ k11mn k12mn
sym k22mn

� �
ðA:2Þ

where

k11mn ¼
l
 xnð Þ
Dmn

in

mn f


2

mn

�
þ g2

m

�
k12mn ¼

l
 xnð Þ
Dmn

gm 2n

mnf



mn

�
� f


2

mn þ g2
m

�
k22mn ¼

l
 xnð Þ
Dmn

if
mn f

2

mn

�
þ g2

m

�
in which Dmn ¼ g2

m þ n

mnf



mn.
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